8th Anti-Ageing Skin Care Conference 29 - 30 November 2022 Royal College of Physicians, London

Inflammaging in human photoexposed skin: Early onset of senescence and imbalanced epidermal homeostasis across the decades

> John E. Oblong The Procter & Gamble Company Cincinnati, OH USA

Skin Aging Continuum Model

Multi-Decade and Ethnicity Study (MDE) Objective:

Utilize a systems biology approach to develop a fundamental understanding of the molecular mechanisms which contribute to skin aging/photoaging

Laser Capture Microdissection (LCM)

Precise sampling of skin compartments and reduces complexity of signal with mixed compartments

Dermis

The Multi-Decade and Ethnicity Study (MDE)

Elastosis, inflammation, and erythema: Consistent pattern of highest levels in upper cheek

Macro structural elastosis increases with age

The Multi-Decade and Ethnicity Study (MDE)

Hypothesis: Inflammaging ecosystem in skin Stress induced inflammation that leads to premature onset of senescence and aging

https://www.skininc.com/science/physiology/article/21880711/inflammaging-changing-the-face-of-skin-care

Markers of inflammation, photoexposure, and DNA damage and methylation elevated across age groups

Inflammatory markers elevated in photoexposed face

Photosensitive biomarker elevated in both photoexposed sites

cis/trans-urocanic acid

Age-associated changes in epidermal morphology

young

old

Significant changes between 20's and 60-70's

Loss of microcapillary vessels

Gene expression patterns of differentiation associated proteins

Processes/components showing increased expression with photoage

- Epidermal Differentiation Complex
- Proteases
- Keratins
- Calcium binding protein/AMP
- Protease inhibitors
- Proliferation (lower)
- Late cornified envelope (20's-50's)

Menopausal status of MDE subjects

Staining of select differentiation associated proteins in face and arms

Proteomics supports similar directional differences as expression patterns between old and young (outer forearm)

Table 2. Median fold change of detected proteins between 60's and 20's age groups from laser capture microdissection sections of epidermis from photoexposed dorsal forearms and changes in gene expression correlation.

Protein	Gene	Median fold change 60's vs 20's	<i>p</i> -value	Gene expression changes with age
Keratin 2	KRT2	1.57	<0.001	Increased
Keratin 10	KRT10	1.50	<0.001	Increased
Cystatin M	CST6	1.86	0.001	Increased
Cystatin A	CSTA	2.37	0.002	Increased
Calpain 1	CAPN1	2.33	0.009	No
Fructose-bisphosphate aldolase A	ALDOA	2.04	0.010	Increased
Arachidonate 12 lipoyxgenase 12R	ALOX12B	2.42	0.011	Increased
Bleomycin hydrolase	BLMH	1.73	0.016	Increased
Annexin A8	ANXA8	1.86	0.020	Increased
Cystatin B	CSTB	2.14	0.022	Increased
Annexin A1	ANXA1	1.41	0.026	Increased
Involucrin	IVL	1.47	0.026	Increased
Transglutaminase 1	TGM1	1.38	0.026	Increased
Annexin A2	ANXA2	1.22	0.026	Decreased
Suprabasin	SBSN	1.37	0.026	Increased
Serine protease inhibitor Kazal-type 5	SPINK5	1.43	0.028	Increased
Calmodulin-like protein	CALML3	1.71	0.030	Increased
Malate dehydrogenase 2	MDH2	0.56	0.044	Decreased
Protein S100-A14	S100A14	1.35	0.046	Increased
Pyruvate kinase M	PKM	1.23	0.049	Increased
Gelsolin	GSN	1.23	0.062	Increased
Transglutaminase 3	TGM3	1.45	0.084	Increased
Hemoglobin alpha	HBA	16.40	0.092	Increased

TuKiet Lam, PhD Yale School of Medicine

Markers of DNA damage

53BP1 – DDR marker

young

old

Higher in photoexposed arm compared to buttock sites and increases with age

Markers of DNA methylation

Epigenetic methylation content

- Epidermis Higher in photoexposed arm compared to buttock sites and increases with age
- Dermis Patterns increase with age but not photoexposure

Epidermis vs. Dermis

Senescence associated transcript profiles

(A) Age Correla			elation
dene	arm	buttock	face
CCL22	0.23	0.11	0.26
CDKN2A	0.66	0.43	0.64
CDKN2B	0.21	0.14	0.020
CD74	0.33	0.34	0.20
CREG1	-0.05	0.11	0.20
CRYAB	0.48	0.28	0.41
CXCR1	0.12	-0.26	0.26
CXCR2	0.45	0.06	0.35
FOXE1	0.48	0.04	0.30
GLB1	0.22	-0.22	0.15
IL2RG	0.14	-0.04	0.26
IL15	0.23	0.11	0.25
IL18R1	0.29	0.29	0.34
MMP9	-0.02	0.16	0.14
MTOR	0.14	-0.04	0.23
PYCARD	0.01	-0.27	0.22
SMAD3	0.31	0.09	0.20
STAT1	0.06	0.10	0.16
IL7	-0.25	-0.09	-0.33
LMNB1	-0.27	-0.17	-0.02
RBL2	-0 17	0.06	-0.24
SIRT1	-0.39	-0.10	-0.38
SIRT3	-0.29	-0.01	-0.19
SIRT4	-0.25	-0.18	-0.39
TP53	-0.20	-0.14	-0.11

 expression color legend

 p values
 ↑
 ↓

 <0.05</td>
 ✓
 ✓

 <0.001</td>
 ✓
 ✓

p16^{INK4a}

Elevated levels of p16^{INK4a} staining in nuclei from old face

Oxygen sensing/hypoxia and glycolysis associated transcript profiles

PGM1

PGK1

PKM

TPI1

0.20 0.09 0.23

expression color legend

p values <0.05

<0.001

00001

0.06 0.21 0.28

0.20 0.30 0.23

-0.04 -0.05 0.06

HIF-1α and PFKFB3 Mediate a Tight Relationship Between Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic Macrophages <u>Ahmed Tawakol</u>, et al, Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35:1463–1471

Greater staining for HIF-1 α and hemoglobin α in old photoexposed sites HIF-1 α

Keratinocytes shift towards glycolysis under lower oxygen tensions

- HaCaT keratinocytes grown under 5% or 20% O₂ conditions
- Mitochondrial function and glycolysis tested on Seahorse Flux Analyzer

Mitochondrial energy stress test

Glycolytic rates

Impact of epidermal morphology changes on oxygen availability?

Damaged leaky blood capillaries (lower oxygen supply) Key biological processes changing with age in epidermis of photoexposed skin

Summary

- This systems biology-based analysis supports that photoexposed facial skin is undergoing inflammaging in the 20's and that multiple biologic pathways are affected in this process.
- Chronic presence of inflammation and senescence induction early in age may contribute to the molecular reprogramming, imbalance of epidermal homeostasis, and morphological changes.
- Heightened oxygen sensing/hypoxic response, epigenetic drift, and metabolic shift may play roles leading to this imbalance.
- Detection of non-erythroid-derived hemoglobin requires further evaluation on its function and role in skin biology and aging.
- While this work provides a body of evidence on the role of senescence and inflammaging in impacting skin aging, further work is still required.

Acknowledgements

P&G

Bradley B. Jarrold, Yvonne DeAngelis, John Bierman, Charlie Bascom

Harvard Medical School (Boston, MA, USA) Alexa B. Kimball

A*Star (Singapore) Christina Yan Ru Tan, Chin Yee Ho, Ai Ling Soon, Sophie Bellanger, Oliver Dressen

Yale School of Medicine (New Haven, CT, USA) TuKiet T. Lam

Zymo Research (Irvine, CA, USA)

Xiaojing Yang, Calvin Nguyen, Wei Guo, Yap Ching Chew

Durham University (Durham, UK)

Lydia Costello, Paola De Los Santos Gomez, Stefan Przyborski

Thank you

