8th Anti-Ageing Skin Care Conference

29 - 30 November 2022 Royal College of Physicians, London

Dermal Ageing: Assessment of Collagen, Elastin and AGE in vivo

Stephan Bielfeldt

Agenda

- Intrinsic and extrinsic aging of the dermis
- Non invasive in-vivo methods to assess ageing of the dermis
 - In vivo assessment of collagen and elastin
 - In vivo assessment of AGE
- Summary

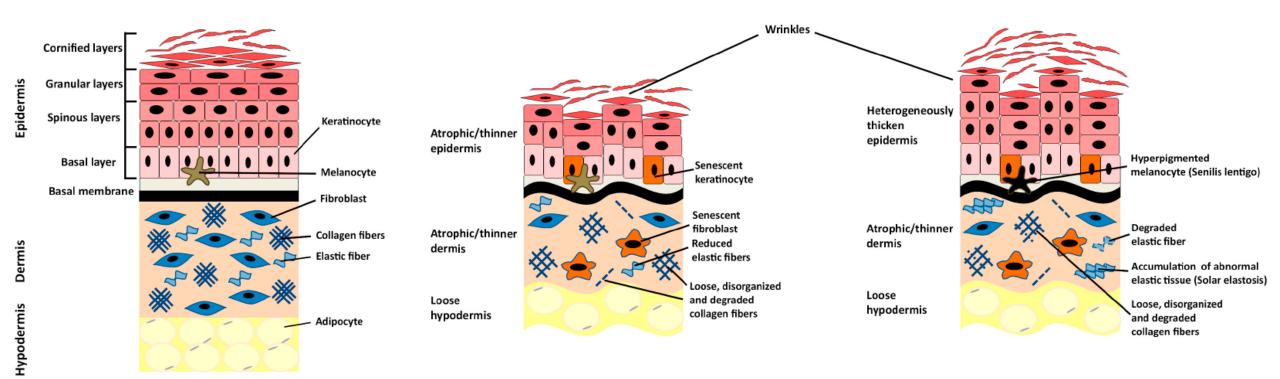
The Dermis: About 1 mm thick (Epidermis ~ 60 μm) Composition: Mainly Protein Fibres in a Gel of 4% of Hyaluronic Acid

TABLE I

Fibrous proteins of human corium

	Male	Female
Collagen	$75.9 \pm 6.4^{*}$ (47)	77.7 ± 5.9 (36)
Elastin	4.45 ± 1.4 (17)	3.95 ± 0.9 (10)

* Mean and standard deviation of the mean.


Weinstein, G. D., & Boucek, R. J. (1960). Collagen and elastin of human dermis. Journal of Investigative Dermatology, 35(4), 227-229.

YOUNG SKIN

Ageing of the Skin

CHRONOLOGICALLY AGED SKIN

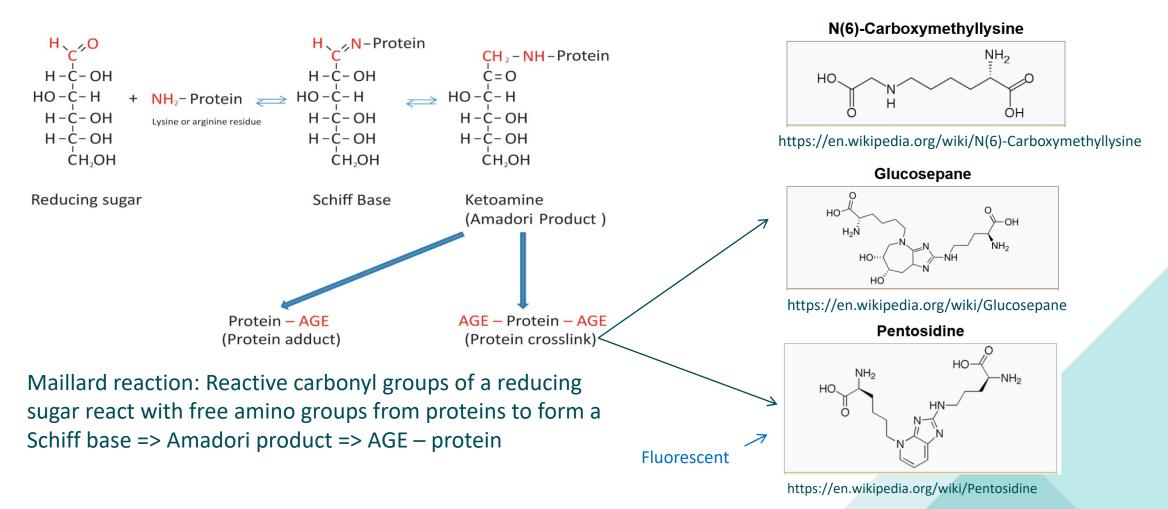
PHOTO-AGED SKIN

Orioli, D., & Dellambra, E. (2018). Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells, 7(12), 268.

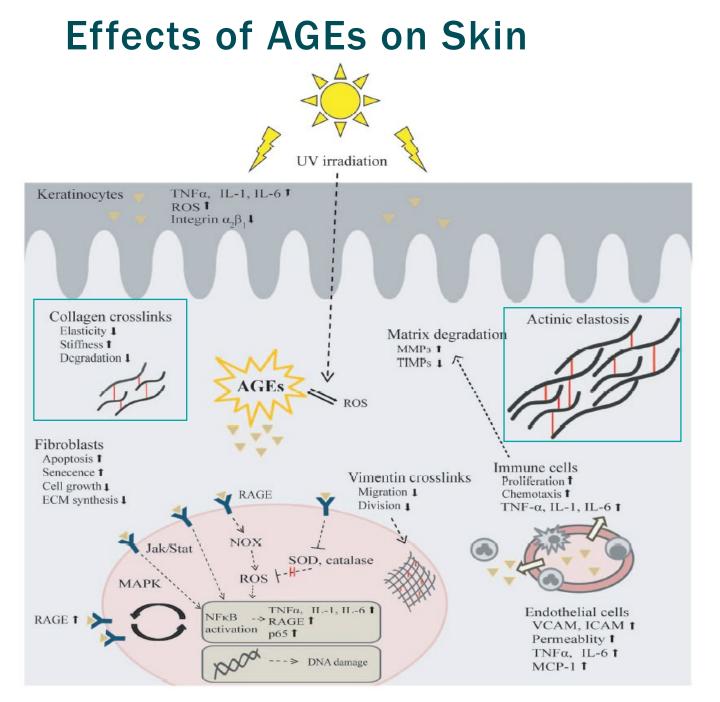
Ageing and Photoageing of the Dermis

On cell level

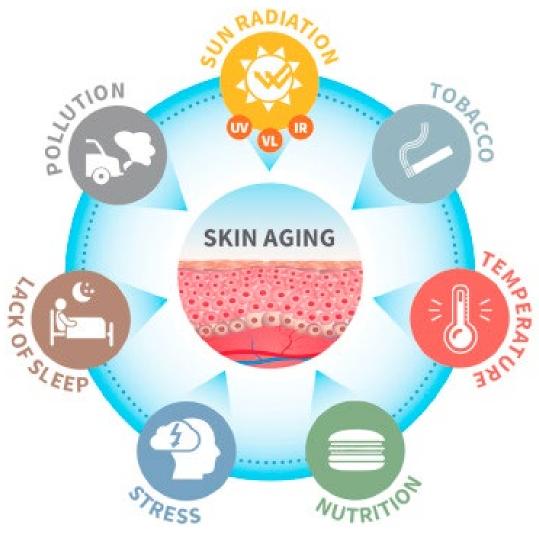
- Senescence of fibroblasts
- Decrease in collagen synthesis
- Decrease in hyaluronic acid production


On tissue level

- MMP-1 formation by extrinsic stress (collagen cleavage)
- Degradation of collagen and elastin (formation of deep wrinkles)
- Deposition of dysfunctional elastin (solar elastosis)
- Thinning of the dermis (atrophy)
- Glycation of proteins (yellowish skin discoloration)


What are Advanced Glycation End-products (AGE)?

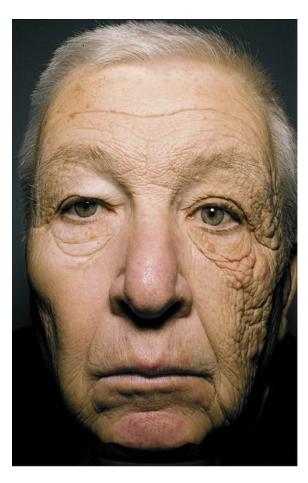
Marker molecules


Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Key players in skin aging?. Dermato-endocrinology, 4(3), 259-270.

- Diabetes is an important aggravating disease but AGEs are also found in aged and photoaged skin
- ROS from sunlight and AGE reinforce each other in their deleterious effects
- AGEs decrease cell proliferation, increase senescence/apoptosis, induce oxidative stress and are proinflammatory
- AGEs induce collagen crosslinking and contribute to solar (actinic) elastosis

Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Key players in skin aging?. Dermato-endocrinology, 4(3), 259-270.

Extrinsic Ageing The Skin Ageing Exposome: Causes are Manifold



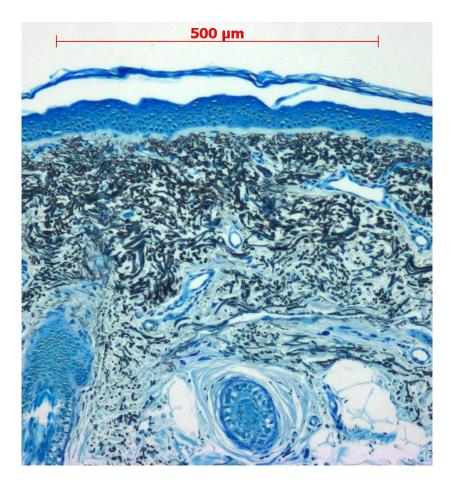
Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A., & Passeron, T. (2017). The skin aging exposome. Journal of dermatological science, 85(3), 152-161.

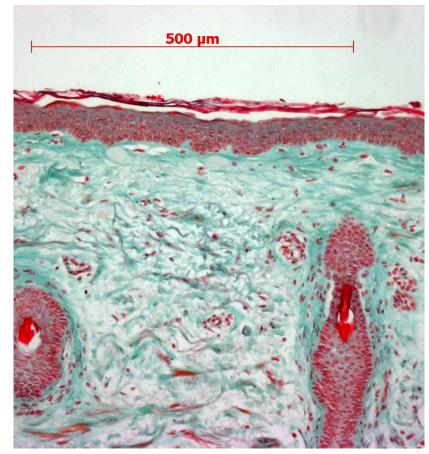
Visible Signs of Intrinsic and Extrinsic Ageing

Periorbital Wrinkles: Intrinsic ageing and photoageing

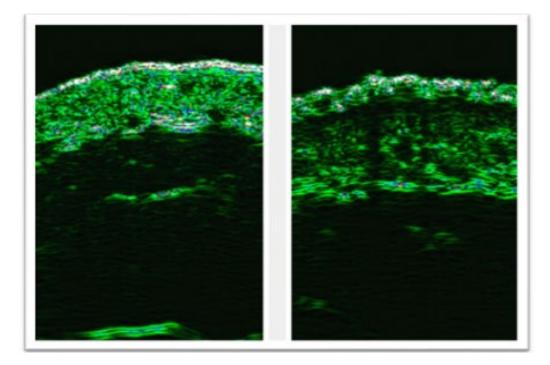
Wrinkles: Intrinsic ageing and on left face side Photoageing on the right face side

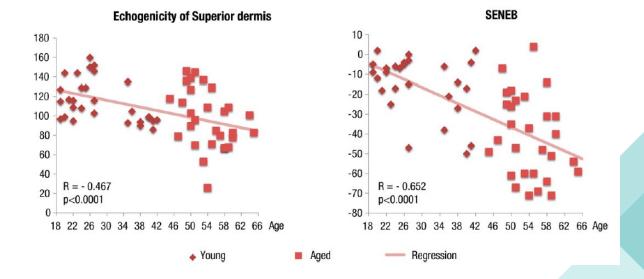
Gordon, J. R., & Brieva, J. C. (2012). Unilateral dermatoheliosis. New England Journal of Medicine, 366(16), e25. Photograph under license: CC BY-NC-ND 4.0


Agenda


- Intrinsic and extrinsic aging of the dermis
- Non invasive in-vivo methods to assess ageing of the dermis
 - In vivo assessment of collagen and elastin
 - In vivo assessment of AGE
- Summary

Invasive and ex vivo: Stainings for Collagen and Elastin


- Orcein staining (black and blue): Elastic fibers in black
- Masson-Goldner staining (red and green): Collagen fibres in green.


Bonta, M., Daina, L., & Muţiu, G. A. B. R. I. E. L. A. (2013). The process of ageing reflected by histological changes in the skin. *Romanian journal of morphology and embryology= Revue roumaine de morphologie et embryologie, 54*(3 Suppl), 797-804.

Masson-Goldner staining

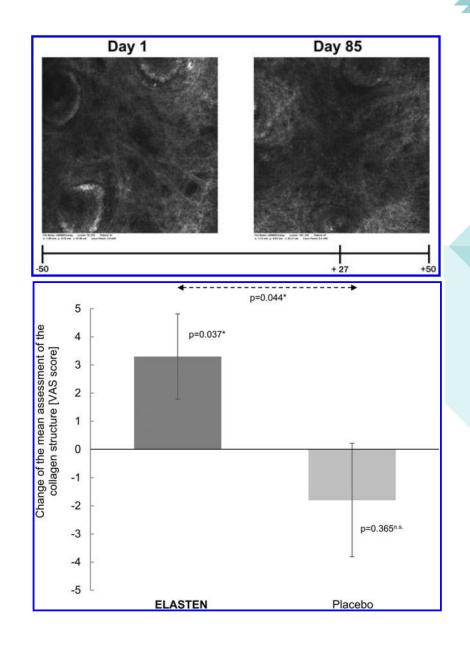
Orcein staining

22 MHz-Ultrasound Measurement on aged Skin Sub Epidermal Non Echogenic Band (SENEB) due to Degraded Fibres in the Dermis

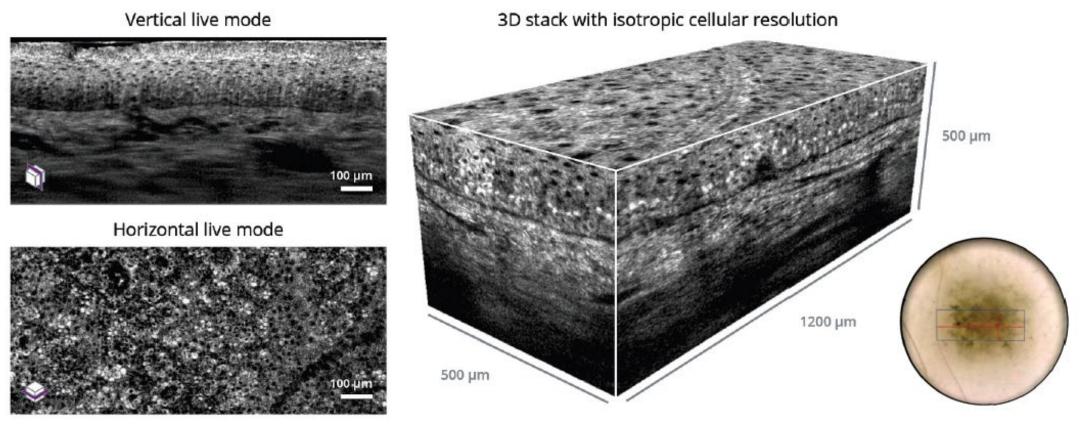
Normal skin (outer forearm) Photoaging: Echo poor region (SENEB) below epidermal echo

Pittet, J. C., Freis, O., Vazquez-Duchêne, M. D., Périé, G., & Pauly, G. (2014). Evaluation of elastin/collagen content in human dermis in-vivo by multiphoton tomography—variation with depth and correlation with aging. Cosmetics, 1 (3), 211-221.

Confocal Reflectance Microscopy

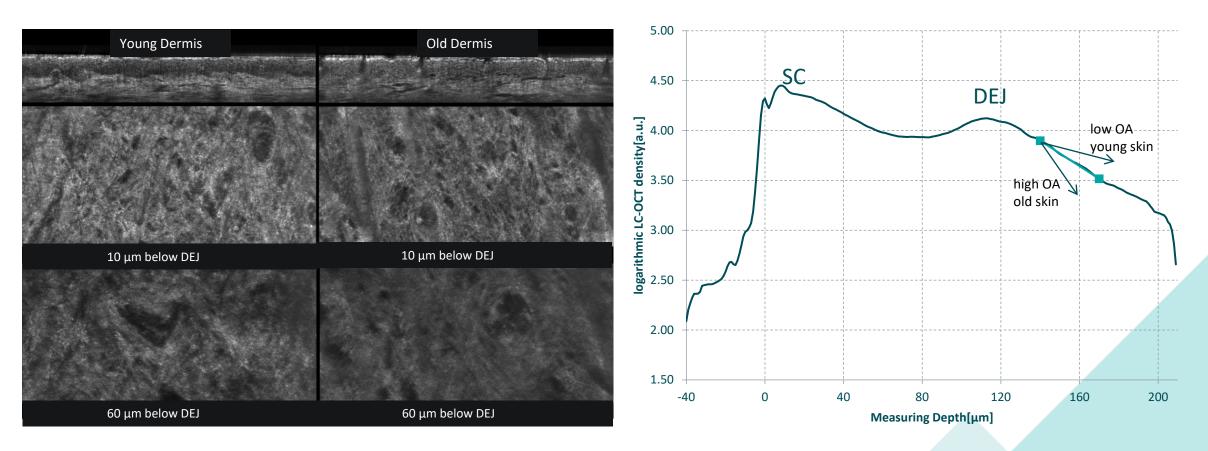

Visible Improvement of Collagen Structure Assessed in Blinded Image Grading on Horizontal Images of the Dermis

JOURNAL OF MEDICINAL FOOD J Med Food 23 (2) 2020, 147–152 Mary Ann Liebert, Inc., and Korean Society of Food Science and Nutrition DOI: 10.1089/jmf.2019.0197

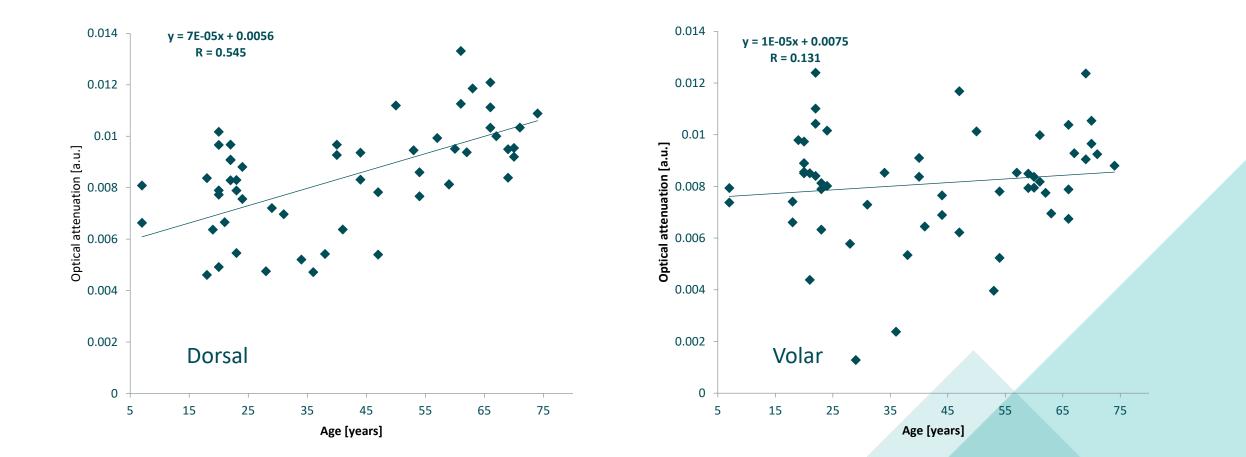

> A Dermonutrient Containing Special Collagen Peptides Improves Skin Structure and Function: A Randomized, Placebo-Controlled, Triple-Blind Trial Using Confocal Laser Scanning Microscopy on the Cosmetic Effects and Tolerance of a Drinkable Collagen Supplement

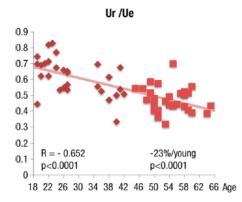
Sabrina Laing, Stephan Bielfeldt, Carolin Ehrenberg, and Klaus-Peter Wilhelm

proDERM Institute for Applied Dermatological Research, Schenefeld-Hamburg, Germany.

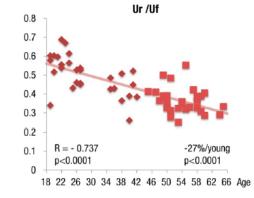

LC-OCT – Imaging of Epidermis, Papillary and Reticular Dermis \uparrow down to ~ 400 µm; Resolution (x, y, z) ~ 1 µm

Imaging of an age spot

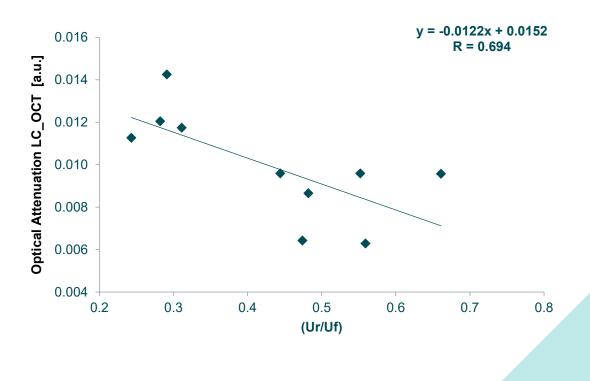

What is Optical Attenuation (OA)? The LC-OCT Signal Becomes Weaker with Skin Depth

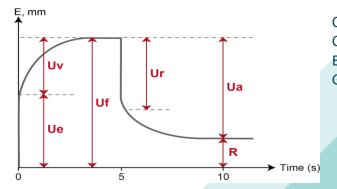



Optical Attenuation: The negative slope of the LC-OCT signal in the upper dermis Young skin => high fibre reflection => low Optical Attenuation Aged skin => low fibre reflection => high Optical Attenuation


Correlation of dermal optical attenuation of dorsal and volar dermis with age N = 57; R² = 0.297; depth 140 - 170 μ m; analyzed from by LC-OCT data

Skin Elasticity Measurement (Suction device)

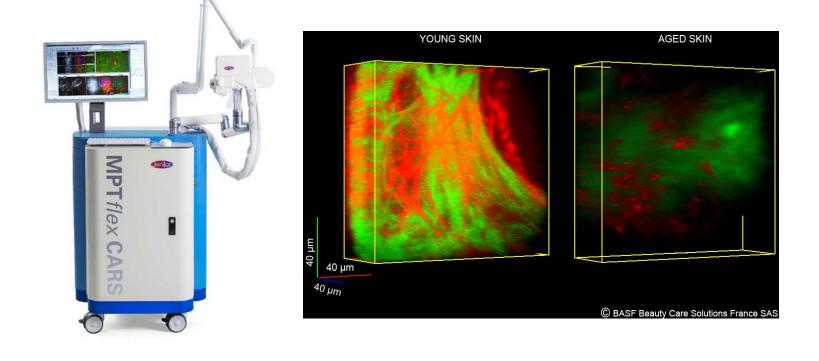



YoungAged

Regression

 $R = Pearson \ correlation \ coefficient$ p<0.05 significant correlation

Pittet, J. C., Freis, O., Vazquez-Duchêne, M. D., Périé, G., & Pauly, G. (2014). Evaluation of elastin/collagen content in human dermis invivo by multiphoton tomography—variation with depth and correlation with aging. *Cosmetics*, *1* (3), 211-221.



Cutometer[®] MPA 580, Courage+Khazaka Electronic GmbH, Köln, Germany

Multiphoton Tomography of the Upper Dermis Imaging of Collagen and Elastin

- Autofluorescence of elastin and collagen crosslinks (red color)
- Collagen Second Harmonic Generation (SHG)-signal (green color)
- Quantification Parameter: SHG-to-AF Aging Index of Dermis (SAAID)
- SAAID = (Intensity of Collagen – Intensity of Elastin)/(Inten,sity of Collagen + Intensity of Elastin)

Pittet, J. C., Freis, O., Vazquez-Duchêne, M. D., Périé, G., & Pauly, G. (2014). Evaluation of elastin/collagen content in human dermis in-vivo by multiphoton tomography—variation with depth and correlation with aging. *Cosmetics*, *1* (3), 211-221.

Multiphoton Tomography of the Upper Dermis Imaging of Collagen and Elastin

SAAID inferior dermis Ratio A.U. (Arbitrary Unit) 140 0.3 120 0.2 100 0.1 80 0.0 60 -0.1 40 R = -0.246-0.2 R = -0.57720 p < 0.0001p < 0.0001-0.3 0 18 22 26 30 34 38 42 46 50 54 58 62 66 Age 18 22 26 30 34 38 42 46 50 54 58 62 66 Age Young Regression Aged

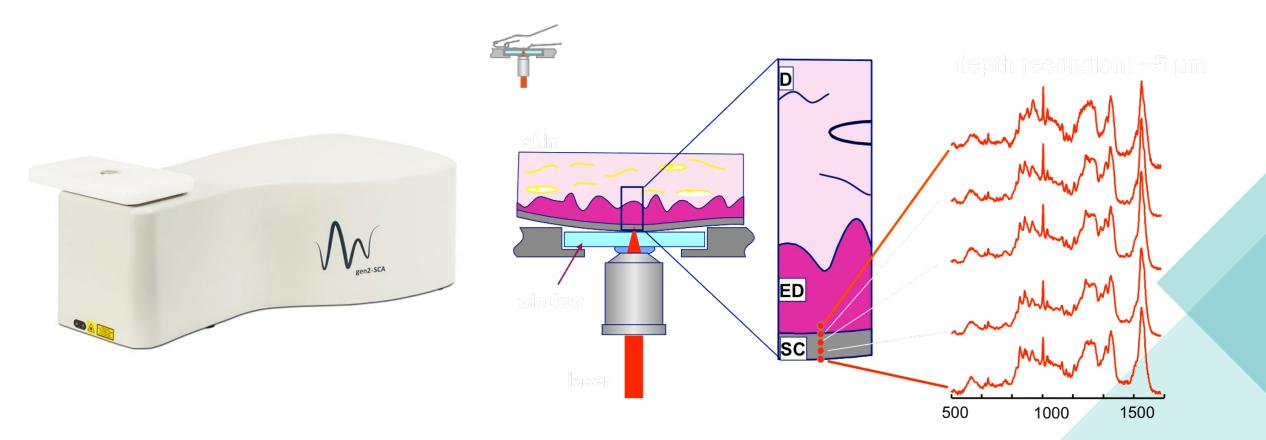
Elastin in inferior dermis

Pittet, J. C., Freis, O., Vazquez-Duchêne, M. D., Périé, G., & Pauly, G. (2014). Evaluation of elastin/collagen content in human dermis in-vivo by multiphoton tomography—variation with depth and correlation with aging. *Cosmetics*, 1 (3), 211-221.

Is Water Replacing Collagen in Ageing/Photoageing of the Dermis?

Received: 18 June 2020 Accepted: 5 September 2020

DOI: 10.1111/srt.12948

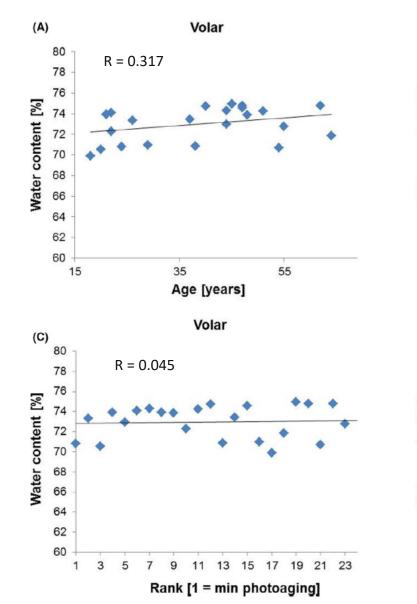

ORIGINAL ARTICLE

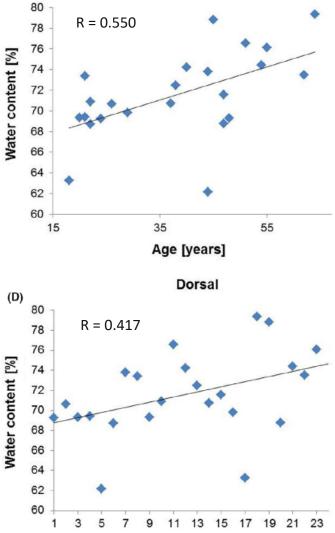
WILEY

Measurement of dermal water content by confocal RAMAN spectroscopy to investigate intrinsic aging and photoaging of human skin in vivo

Ghaith Kourbaj 💿 | Stephan Bielfeldt 💿 | Matthias Seise 💿 | Klaus-Peter Wilhelm 💿

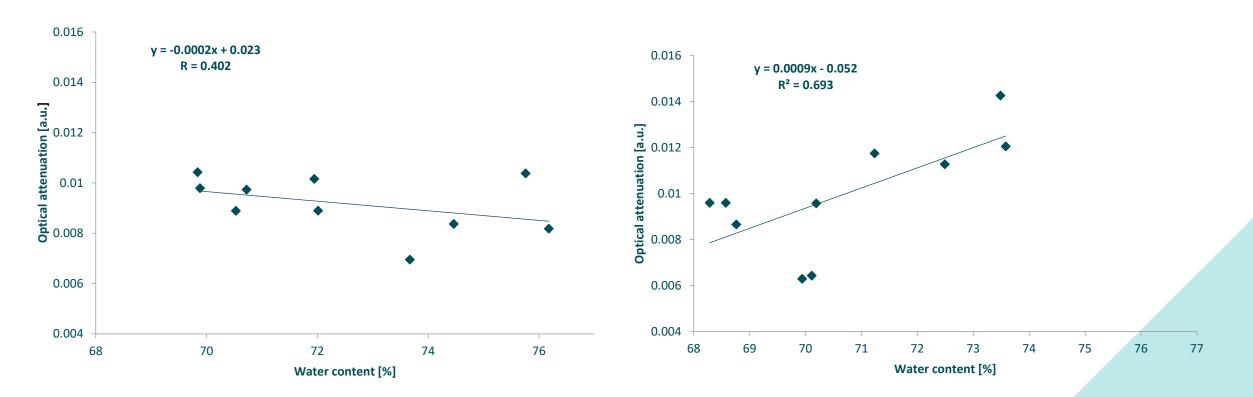
Confocal Raman Microspectroscopy can Measure Water Content in the Upper Reticular Dermis




Water Content in the Dermis Correlates with Ageing and Photoageing

(B)

Dorsal



Rank [1 = min photoaging]

Measurement on the forearm of 23 female subjects at a depth of 130 to $150 \mu m$ (upper reticular dermis)

Kourbaj, G., Bielfeldt, S., Seise, M., & Wilhelm, K. P. (2021). Measurement of dermal water content by confocal RAMAN spectroscopy to investigate intrinsic aging and photoaging of human skin in vivo. *Skin Research and Technology*, *27*(3), 404-413.

Does Water Content in the Dermis Correlate with LC_OCT Optical Attenuation?

Measurement on the forearm of 10 female subjects at a depth of 130 to $150 \mu m$ (upper reticular dermis)

On sun exposed dorsal skin water seems to replace collagen in ageing upper dermis

Agenda

- Intrinsic and extrinsic aging of the dermis
- Non invasive in-vivo methods to assess ageing of the dermis
 - In vivo assessment of collagen and elastin
 - In vivo assessment of AGE
- Summary

Invasive Measurement Methods of AGEs Biopsies or Tissue Fluid Required; Non Invasive: CML from SC-Extracts*

Table 1. Detected AGEs in skin*

AGE	Skin compartments involved	Targets of glycation	Methods of detection	
CML	Epidermis ¹⁸	Epidermis	LC-ESI-TOF-MS, IF,	
	Aged and diabetic dermis ¹⁹⁻²²	(SC -CK10, SS, SG) ¹⁸	IB ¹⁸	
	Photoaging–actinic elastosis ^{20,23}	Collagen ¹⁹⁻²¹	SIM/GC-MS ^{19,21}	
		Vimentin ²² Elastin ^{20,23}	IHC ^{20,22,23} ELISA, ²³ confocal microscopy ²³	
Pentosidin	Aged and diabetic dermis ^{19,24,25}	Collagen ^{19,24,25}	Reversed-phase HPLC, ^{19,24} ELISA, ²⁵ IB ²⁵	
GO	Aged dermis ²¹	Collagen ²¹	LC/MS ²¹	
MGO	Aged dermis ²¹	Collagen ²¹	LC/MS ²¹	
Glucosepane	Aged dermis ^{21,26}	Collagen ^{21,26}	LC/MS ^{21,26}	
Fructoselysine	Aged dermis ²¹	Collagen ²¹	LC/MS ²¹	
CEL	Aged dermis ^{21,27}	Collagen ^{21,27}	LC/MS ²⁷	
			SIM/GC-MS ²¹	
GOLD	Aged dermis ²⁸	Collagen ²⁸	LC/MS ²⁸	
MOLD	Aged dermis ²⁸	Collagen ²⁸	LC/MS ²⁸	

ELISA, enzyme-linked immunosorbent assay; GO, glyoxal; HPLC, high performance liquid chromatography; IHC, immunohistochemistry; IB, immunoblotting; IF, immunofluorescence; LC-ESI-TOF-MS, liquid chromatography–electrospray ionization time-of-flight mass spectrometry; LC/MS, liquid chromatography/mass spectrometry; MGO, methylglyoxal; SIM/GC-MS, selected ion monitoring gas chromatography-mass spectrometry; SC, stratum corneum; SG, stratum granulosum; SS, stratum spinosum; all other abbreviations are already explained in the text.

Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Key players in skin aging?. *Dermato-endocrinology*, *4*(3), 259-270.

*Kawabata, K., Yoshikawa, H., Saruwatari, K., Akazawa, Y., Inoue, T., Kuze, T., ... & Sugiyama, Y. (2011). The presence of Nε-(Carboxymethyl) lysine in the human epidermis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(10), 1246-1252.

In Vivo Measurement of AGEs

AGE Reader

- The AGE Reader is a non-invasive monitoring medical device
- UV light is used to excite autofluorescence in human skin tissue.
- Skin autofluorescence is evaluated to roughly quantify the level of AGEs

Variables	AF (a.u.)	CLF (a.u./ µg hyp.)	Pentosidine (pmol/ µg hyp.)	CML (mmol/ mol lysine)	CEL (mmol/ mol lysine)
AF (a.u.)	-	r=0.62 **	r=0.55 **	r=0.55 **	r=0.47 **
CLF (a.u./ µg hyp.)	r=0.62 **	-	r=0.55 **	r=0.50 **	r=0.37 *
Pentosidine (pmol/ µg hyp.)	r=0.55 **	r=0.55 **	-	r=0.46 **	r=0.41 **
CML (mmol/ mol lysine)	r=0.55 **	r=0.50 **	r=0.46 **	-	r=0.65 **
CEL (mmol/ mol lysine)	r=0.47 **	r=0.37 *	r=0.41 **	r=0.65 **	-

Table 1. Correlation between skin autofluorescence, collagen-linked fluorscence and specific skin AGE levels in validation study for diabetic and control population.

Meerwaldt, R., Links, T., Graaff, R., Thorpe, S. R., Baynes, J. W., Hartog, J., ... & Smit, A. (2005). Simple noninvasive measurement of skin autofluorescence. *Annals of the New York Academy of Sciences*, 1043(1), 290-298.

Summary

- Ageing and photoageing of the dermis can be assessed in vivo and non invasively
 - Collagen degradation can be assessed with confocal microscopy (CRS, LC-OCT)
 - Multiphoton tomography of the upper dermis can be used to quantify elastin
 - Water content of the dermis (Raman measurements) correlates with age dependent depletion of dermal fiber proteins
 - AGE content can roughly be quantified in vivo (AGE reader); advanced in vivo methods would be appreciated
- Mainly radiation from the sun is responsible for the premature ageing of protein structures in the dermis